PolySearch2 - Result Details


(2020) Bisphenol A and polychlorinated biphenyls enhance the cancer stem cell properties of human ovarian cancer cells by activating the WNT signaling pathway. Chemosphere;Chemosphere;2020 May;246:125775

Cancer stem cells (CSCs) are a very small subpopulation that have stem-cell qualities, such as exhibiting self-renewal, immortality, and pluripotency, and the capability to differentiate into different tumor cell subtypes. CSCs contribute to tumor onset, expansion, metastasis, resistance and recurrence. Meanwhile, organic pollutants, including nonpersistent pollutants, such as Bisphenol A (BPA), and persistent pollutants, such as polychlorinated biphenyls (PCBs), are toxic chemicals that can be readily ingested via dietary exposure and other exposure routes and can accumulate through the food chain. Many organic pollutants increase the risk of ovarian cancer depending on their estrogenic effects. Nonetheless, most previous studies have focused on the toxic effects of these pollutants on the proliferation, metastasis and development of ovarian cancer cells. However, little research has investigated the adverse effect of these pollutants on ovarian cancer stem cells. The current study found that BPA, PCB126 and PCB153 greatly enhanced the formation of cancer stem-like cell spheres of OVCAR-3A cells (human ovarian cancer cells) under low-dose exposure. In parallel, the CD44 < sup > high < /sup > CD24 < sup > low < /sup > cell subpopulation was increased in treated cells relative to untreated cells. Elevated expression of cancer stem cell markers, including ALDH1A1, CD133, SOX2, NANOG and OCT4, was demonstrated in treated cells compared to untreated cells. In summary, these data demonstrate that the oncogenic effects of pollutants can be evaluated according to changes in caner stem cell properties.

MEDLINE 31918092 : Bisphenol A and polychlorinated biphenyls enhance the cancer stem cell properties of human ovarian cancer cells by activating the WNT signaling pathway.
Legend


This project is supported by the Canadian Institutes of Health Research (award #111062), Alberta Innovates - Health Solutions, and by The Metabolomics Innovation Centre (TMIC), a nationally-funded research and core facility that supports a wide range of cutting-edge metabolomic studies. TMIC is funded by Genome Alberta, Genome British Columbia, and Genome Canada, a not-for-profit organization that is leading Canada's national genomics strategy with $900 million in funding from the federal government.